Institute for Advanced Studies in Artificial Intelligence

IAS：II

N2002.12 ews

ニュース No． 11

発行人：中京大学人工知能高等研究所

運営委員会（発行年2回）
〒470－0393 豊田市貝津町床立101
Tel 0565－46－1211 Fax 0565－46－1296
http：／／www．cglab．sccs．chukyo－u．ac．jp／IASAI／index．html

〈表紙解説〉

表紙の画像は，情報科学科興水研究室と三洋電機株式会社との共同研究で行った，3D顔サーフェスモデ ルのデフォルメ結果である。左下の画像が三洋電機株式会社によるPierimoで計測された顔データである。こ のサーフェスデータの特徴点を自動抽出し，左上のような特徴点のワイヤーフレームモデルを生成する。特徴点がデフォルメされることで右上のように変形され，右下のような3D似顔絵が生成される。
（中京大学情報科学部 輿水研究室 藤原孝幸）

－巻頭言	産学連携への新たな船出	1
－産学連携特集	《特別寄稿》慶應義塾大学教授中島真人 産学連携の研究活動を考える	2
■ 産学連携特集	〈デンソー〉（人と車一大学と会社）のインタラクション	5
■ 産学連携特集	〈三洋電機〉3D似顔生成システムの研究	7
回産学連携特集	〈電子システム〉電子システム株式会社の紹介と研究課題動向	10
回産学連携特集	〈リフレクション企業連携による製品開発事例	13
回産学連携特集	〈CGラボ〉CGラボにおけるロボット実験環境	15
回産学連携特集	〈産学協同ネットワーク推進委員会〉 ～地域と世界に開かれた研究拠点にふさわしいネットワーク環境の整備～	19
圆産学連携特集	〈CREST〉高度メディア社会のための協調学習支援システム	21
回産学連携特集	〈学生産学連携研究〉顔サーフェスデータのデフォルメ手法	25
－会議報告	第87回中京大学情報科学部コロキウム	27
置会議報告	第88回中京大学情報科学部コロキウム	29
－会議報告	ソフトサイエンスシリーズ 第21回	31
－研究所員一覧		34
－編集後記		35

巻頭言

産学連携への新たな船出
 — money•space•staff 資産—

情報科学部 教授 輿水大和
（産学共同研究推進ワーキンググループ副委員長）

1990年にIASAIが，1996年にCGラボが，福村初代学部長と戸田初代研究所長のご尽力で情報科学部に附置されて，本学における産学連携研究がスタートを切った。近年，大学と地域，とりわけ産業社会との連携 に力を入れる国家規模の動きが盛んになり始めているが，これに先んじた斬新な試みがここで生み出されたわ けである。取り巻く経済状況が変わった今後の産学連携を展望する上でも，このことを改めて誇りと糧とした いと思っている。

産業社会は泠え込んでいる。企業から大学への投資もかつてのバブル期のような余裕はなくなった。しかし， これから脱却するために必要な投資，つまり本気な投資の機会はその時代よりも大きく，かつ緊急度も大きい はずである。大学が澄んだ目と明確な自覚を持った研究情報を発信することができれば，またとないチャンス到来なのかも知れない。

副題に即物的なキーワードを並べた。IASAIの産学連携の第2期に入って自覚しなければならないことを整理するとそのようになると思っているからである。まず，
「Space」資産について。
これは資産として第1期から継承された。しかし偏に，「money」，「staff」資産の充実に繋がるspace資産の使い方を模索することに自覚的であること，これがこれからの指針であろう。さて，
「money」資産について。
これは，結局は奨学寄付金，委託研究資金を外部から得ることである。それを支援するためのspace資産 は，CGラボの共同研究室を発展させて，IASAI産学共同研究室が 6 F に準備が一応整った。また，規約も産学共同研究推進WGによって間もなく固められることになって，先行的に数社のサテラボがスタートしている。 また，その環境のためのネットワーク整備も動き始めている。同時に，科技庁助成金，HRC，IPA事業， CREST，また科研費などの実績と経験を踏まえて，公的な資金の導入にもこれまで以上に自覚的でなければ ならない。最後に，しかし最も焦眉の急を要するのは，
「staff」資産について。
所員である学部教員とその研究の活性度こそが，この資産の源泉である。外部からその様子を知ってもら う唯一の策は，研究発表，特許取得，論文掲載による情報発信であるから，これらを現状の 10 倍くらいを目標に動き出して欲張りではない。そのために必要なspace，money資産を循環的に注ぐことがとても重要なこ とは言うまでもない。

もっと重要な多くの課題がある。若手の研究者（教員）を増やそう，大学院生を現状の $2 \sim 3$ 倍にしたい，企業（社会人）大学院生も誘導できる，企業からの派遣共同研究員も欲しい，海外からの研究者もこの場に刺激を与えてくれる，．．．．。

産学連携特集を企画するにあたって，未整理であったが，念頭にあったその動機をまとめようと思った結果，以上のような雑文となった。もちろん筆が滑りすぎていたり，逆に踏み込みが甘すぎる点もあるかも知れ ないと恐れている。忌憚のないご指摘，ご指導をお願いしたい。

本特集では，上記のような企画に関連して，様々な立場の諸賢から産学連携の研究動向に関する原稿をお書き頂いた。是非ご一読いただいて，人工知能高等研究所の新たな産学連携の現状へのご理解を賜り，また今後の展望への手掛かりときっかけとしていただければ幸いである。

産学連携の研究活動を考える

慶應義塾先端科学技術研究センター所長中島真人

はじめに
社会に対する大学のミッションとして，長い間の常識であった「教育」と「研究」に，「社会貢献」な る四文字が加わったのは，まだ数年前のことでしかない。大学が教育の成果として明治期以来淀みなく行ってきた人材の輩出は，まさに社会貢献そのものである。また，大学で行われた研究の成果が実用化 され，いろいろな角度から社会に貢献した例は少なくない。しかし，大学で成された研究の成果の民間企業等への技術移転や産学官連携による大学•民間企業•公的機関間での共同研究，また民間企業•公的機関からの受託研究等の遂行は，これまで大学の役割として正面切って要求されるというものでは なかった。ところがこれからは，この方面での努力とその成果が，大学の評価に大きく関わってくる気配である。

ところでこの程，貴学輿水大和教授より，「産学連携の研究活動について何か書いて欲しい」との依頼を受けた。永らく慶應義塾大学の産学連携組織立ち上げと運営に携わってきた者として，書きたいこ とは山ほどあるのであるが，今回は紙面の都合もあるということであったので，日本の大学にとって特 に重大な，「教員の意識改革に関わる問題」，また「大学院学生の処遇に関わる問題」を取り上げてみる ことにした。

大学教員の意識改革

私の所属する慶應義塾大学では理工学部（大学院は，理工学研究科）という形で，理学部と工学部 の機能が一体化されている。「理学」と「工学」は，物理学，化学，数学など，学問を進めるにあたつ ての基本的学術ツールを共有することが多いため，「理工学」というように，纏めて扱われる場合も少な くはないが，元来学問としての「理学」と「工学」は，その目的を大きく異にするものである。「理学」 の目指すものが「真理の探求」であるのに対し，「工学」は，「人類社会で役に立つものを作り出すため に求められる学問」すなわち「実学」なのである。ある登山家が，なぜ山に登るのかとの質問に対して，「そこに山があるから！」と答えたという話はあまりにも有名だが，理学者にとっての研究は，その「山」 を「真理」に置き換えれば，そのまま成立つものと考えられる。これに対して，工学者の行う研究は真理の探究それ自体が目的というわけではない。社会で役に立つ結果を得るための登山こそが，本来の目的でなければならないはずなのである。もちろん，工学においても基礎研究はあるし，それを行うことは工学の進歩にとって極めて重要な活動である。しかし，工学である限りは，その基礎研究が研究のため の研究であってはならないのである。

工学系の教員には，理学者コンプレックスのある人が多い。イソップ寓話に出てくるコウモリではな

いが，工学系の仲間達の前では理学者ぶり，理学者の中にいくと，「自分は，エンジニアだから難しいこ とは解からない！」と，そらとぼけている先生の噂話を耳にしたこともある。それはそれとして，今我々 は，理工学部に席をおく学生の 90% 以上の就職先が一般の民間企業であるという事実に，謙虚に目を向けなければならない。大学卒は，みなエリートであった時代とは違うのである。多額の学費を払って通ってくる学生に対し，大学が，明治期の風習さながらに殿様商売を決め込み続けているわけにはいか ないはずである。大学には，「大学卒」というタイトルだけしか要求しない。社会に役立つ教育は，企業 に入ってからやり直すという日本の大企業の姿勢にも責任はあるが，大学もそれを良いことに，自らの変革に总慢であってはならないのである。
大学の役割は変わった。しかし，大学はなかなか変われないといいうのか現実の姿である。大学を変 えるために，まずしなければならないことは，教員の価値観と教員の業績に対する評価基準を変えるこ とでと私は考える。教員の価値観に伴う努力方向と持ち合わせなければならない能力の基準が変わらな ければ，大学の本質は何も変わらないのである。民間企業における従業員の評価は，極めて単純明快で ある。すなわち，自分の勤める企業の利益につながる仕事をしたかどうかだ。しかし，大学工学系教員 の評価はとても難しい。これまでは，どのくらい沢山の原著論文書いたか，国際会議でどれほほど沢山の発表をしたか等が，評価基準として全国の大学の共通の合意になってきた。「それでは駄目だ」という批判の声もあり，最近ではサイテーション数（論文が，他人の論文の中で引用された数），招待講演数，受賞論文数，また学会等での活動状況，そして出願特許数を評亚に加えることが始まっている。しかし，精々そこまで止まりである。研究成果が本当にどれほど社会に貢献したか等という評価は，ほとんど行 われていない。特許も，出願件数には意味がない。ライセンス実績をもってはじめて評価に値するので ある。
残念ながら，現状若手教員の興味は，一つでも多くの論文を書いて早く教授になることになってしま っている。工学系大学教員の興味は，いかにして社会に役立つ研究をするか，またいかにして社会に役立つ人材を育てるかでなくてはならないはずである。難しいと思われる後者の評価であるが，例えば就職した卒業生の社会での業績や勤務先企業評価などを調査し，それを指導教員の実績に加えるなどとい う方法も考えられるのではなからうか。

大学院学生の処遇

大学にとって，学生はおお客様であり，わが国における私立大学の経営は，そのほとんどがこの学生達 が納付してくれる学費で賄われている。また，私の大学の大学院理工学研究科には約 280 人の教員と約 70 人の研究員が登録されている。しかし，研究活動は，教員と研究員によってのぬ担われているわけで はない。大学院の学生もまた，大学の研究活動を支える重要な構成員なのである。理工学という学問が，幸いにして早熟を許す学問であることは，ノーベル賞受賞者の経歴からしても明らかなように，博士課程の学生ともなると，彼らには，ほぼ一人前の研究者としての研究活動か期待できる。現在，私の大学 の理工学系大学院に在籍する博士課程の学生数は，約 300 人であるが，今それを 450 人に増員しようと いう計画が進んでいる。しかし，そこで考えねばならないのは，その学生達の処遇の問題である。
博士課程の学生の平均年齢は25歳を越す。彼らに，いつまでも親の脛を敕っていろとは，とても言え ない。また，金持ちの子弟だけを期待するのは無理だし，そもそも大学として不健全である。
私が所長をするKLL（慶應義塾先端科学技術研究センター）では，2000年のスタート時以来プロジ エクト研究費から博士課程の学生に給料を払える仕組みを作っている。実施状況からみると，まだそれ ほど活発とは言えない現状にあるが，いずれは定着していくものと考えている。また，その恩恵を受け られない博士課程学生への対応として，研究助成金という名目の小遣い支給プログラムか組まれている。現在は希望者が 250 名以上と多く，一人当たりの配分額は少ないが，上記給与支給を受けられる学生の

増加に伴って，こちらの方への配分を増額できるようになるものと期待している。
研究活動を行う学生への手当てとして，もう一つ期待できるのが，特許等，知的財産のライセンシン グに関わる利益配分である。筆者が運営する中島研究室では，この 3 年間に 41 件の特許を出願し，うち 14件（国内11件，PCT3件，米国1件）が大学の帰属の特許となっている。このうち，ライセンシン グ（技術移転）されたものは2件（3社）で，それらについては，すでに利益配分が実施された。当然の ことながら，発明に関与した学生達も現金での配分を受けた。ライセンス先の企業との，いろいろな制約条件下で行われたライセンシングであったため，額的にはそれほどのものでもなかったが，学生たちに は大金であった。しかし何にも増して，自分たちの研究の成果が実際に社会で評価されたという喜びは ひとしょのものであったようである。「脛を賥っている親に，大きな顔が出来たのが一番嬉しかった」と いう学生もいた。若い時の成功体験は，人生を変えるという。まさに，その後の彼らの張り切りようは尋常のものではなかった。

今日本の若者の理工学離れが問い沙汰されている。勉強が辛い。にも拘わらず，世の中に出ても技術屋の給料は高くない。割の悪い商売だというのである。しかし，筆者は研究室の学生達を励ますとき，最近はよく次のようなことを言っている。「我々の時代は，確かにそうであった。しかし，技術屋を取り巻く世の中の環境は変わりつつある。事実，大学においてさえ，発明によって成果を出した学生への利益配分を行われ始めたではないか。君たちが世の中に出て沢山の良い発明をすれば，それがたとそ企業 に勤める技術屋であっても，大金持ちになれるのだ。これからは，技術屋ほど良い商売はないよ！（笑 み）」と・••。これまでは，一度企業に就職したら，そこでいかに良い発明をしてその企業を潤したと ころで，特段の個人的収入を期待することはできなかった。かつて企業に勤める技術屋の夢は，精々が僅かばかりのボーナスのアップと少しばかりの早い昇進程度のものであったのではなかろうか。

しかし，世の中は変わってきた。日本国の法律（特許法）に照らして考えれば，当然のことであった はずであるが，利益配分の閾値を青天井とする企業が増え始めている。これからの若者は，精神論から だけでは，引っ張っては行けないのである。

```
筆者のプロフィール
氏名:中島真人(なかじま まさと)
1973年 慶應義塾大学大学院工学研究科博士課程修了(工学博士)
1972年 同大学工学部助手
1977年 同大学工学部専任講師
1981年 同大学理工学部電気工学科助教授
1988年 同教授, 現在に至る。
その間
1977-1996年 ホロメディア(株)社長
1979-1989年 (株) 光技研取楴役
1998-2000年 (株)理想科学研究所取締役, 社長を歴任。
現 在 慶應義塾評議員, 慶應義塾先端科学技術研究センター所長,慶應義塾知的資産センタ一運営
    委員, (財) 慶應工学会評議員, 救急対応画像センシングプロジェクト及び交通画像処理プロジ 
    エクト•プロジェクトリーダー。
その他 香川大学客員教授, 徳島大学非常勤講師, 日本発明協会審査委員, 日本学術振興事業団研究
    評価委員, (財) 矢崎科学技術振與記念財団評議員, 選考委員, (財)東電記念科学技術研究
    所審査委員, 日本学術振興会研究評価委員, 日本科学技術振與財団選考委員,など。
```


（人と車—大学と会社）のインタラクション

デンソーサテライト研究室横井邦雄，高橋輝，赤堀一郎

1．はじめに
現在，デンソーは三つのテーマで中京大学情報科学部と委託研究を進めさせていただいている。「人と車載機器のインタラクション（三宅なほみ教授）」，「安全運転支援のための知的ヴィジュアライゼーションの研究 （長谷川教授）」および，本年度からの「人間の知識獲得に関する調査（三宅芳雄教授）」である。本稿では前 の二つのテーマについて，研究の背景やその概要について紹介する。
2．「人と車載機器のインタラクション」
デンソーでは，自動車に関わるさまざまな製品を開発している。その中で，我々はカーナビゲーションシス テム（以下ではナビ）用音声インターフェースの研究開発を手がけてきた。

ナビなどたくさんの機能を持った車載機器では，安全上の観点から走行中の操作が制限されている。また，操作が複雑であり，ユーザービィリティの向上が望まれている。これらを解決するために，音声認識によるユ一ザーインタフェースが提案されてきた。現在，音声認識はナビの標準的な機能となってきている。

我々は，人工知能高等研究所が創設されて以来，この研究所で音声認識の性能向上を進めてきた。その結果，車での認識率や認識語彚の多さでは業界トップクラスの性能を持つ音声認識ナビを製品化することができた。

しかしながら，現状の音声認識ナビは，認識率や認識語彙の面では高い性能を示しているのもの，ユーザー にとって本当に使いやすくなったとは残念ながら言いきれない。
ナビのユーザーインターフェースとしては，タッチパネルと液晶ディスプレーによるグラフィカルユーザーイ ンターフェースが広く用いられている。この方式では，初心者でも触ってみればなんとか使いこなせるように なる。一方，音声ユーザーインターフェース（SUI）では，ある機能を実行するために「何と言ってよいか分 からない」と言う問題や，更には，そもそも「どのような機能があるか分からない」と言う問題が発生する。
そこで，インターフェースを認知科学の側面から研究されている三宅なほみ教授に，ユーザーがSUIに対し てどのようなモデルを持つのか，また，どのようにそのモデルを学習していくのか，などと言った観点から，ユ ーザーにとって使いやすく習熟しやすいSUIの研究を委託している。

写真1，2，は昨年度の委託研究での実験風景である（この風景は，IASAI News No．10の表紙にも掲載さ れた）。この実験では，被験者の発話パターンの特徴から，被験者をいくつかタイプに分類し解析を行った。 その結果，ナビの使用経験とタイプの間に顕著な関係が現れ，ナビの使用経験により異なったモデルを持つこ とが示された。今後の音声認識ナビの開発において，これらの知見をコマンド体系や音声操作のシーケンスを設計する際に役立てていく。
本年度は，課題達成の過程で被験者がモデルを学習する様子や，タスクに行き詰まった時にユーザーがどの ようなヘルプを要求するかを観察する実験を進めている。これらの結果から，システムのガイダンスやヘルプ を設計する上で役立つ知見が得られると期待している。＊

現在は，大学での実験のため被験者が学生に限られている。今後は，被験者層を一般的なユーザーまで広 げた実験を行う予定である。

[^0]また，昨年は委託研究の一環として，「インターフェース論」の授業にも参加させていただいた。我々が社内で実施したユーザビリティテストのVTRを題材にしたプロトコル解析の実習を行った。授業に参加すると いう貴重な経験をさせて頂き感謝している。また，学生の皆さんには，授業内容と社会との繋がりを感じてい ただくことができたのではないかと考えている。

写真1 実験風景1

写真2 実験風景2

3．「安全運転支援のための知的ヴイジュアライゼーションの研究」
自動車には今後，安全•快適•利便の向上のため，さらに多くの機能が与えられる傾向にある。その際に懸念される不安全を防ぐため，音声認識ではおもに，運転者の第2タスクである機器操作の負担軽減を図って きた。

これに対して，画像処理を用いる視界補助，あるいは画像認識を用いる運転支援では，第1タスクである運転そのものの負担を軽減することが狙いである。そのためには，車がどのような情報を得て何をしているかを運転者に伝える表示方法，すなわちヴィジュアライゼーションが，世の中に受け入れられる商品を導く鍵にな る。一瞥で動作状態を理解できないと運転の負担か増し，かえって不安全を生じるからである。
視界補助の分野では，2002年8月発売のトヨタランドクルーザシグナスにおいて，当社が開発に関わった「ナイトビュー」がオプションとして用意された。夜間，前方の歩行者や障害物へ近赤外線を投光し，この波長域に感度があるビデオカメラで撮影する。この映像をフロントウィンドウの下端にあるヘッドアップディス プレイに投影し，前方視界の一部として運転者に呈示する。ヘッドライトがロービームでもハイビームでも， ハイビーム到達距離の 1.5 倍程度先までを視認することができ，危険回避か容易になる。視界補助ではこのほ かに，バックモニターを手始めとする死角解消•取り廻し支援の技術が開発され，普及の途上にある。ただし単純な視覚補助には，情報過多になりやすいという問題がある。特にノイズ・不要な情報までもが目立つよう になり易く，画像処理の必要性が高まろう。

画像認識を用いる運転支援の分野では，走行レーン維持，あるいは低速時車間制御の技術が，開発されて きている。製品の普及のためには，コストを大きく下げる事が必要であり，データサイズや演算量を低減する ための研究が期待されている。
画像処理•画像認識とヴィジュアライゼーションについて経験豊富な長谷川先生•宮崎先生•瀧先生から アドバイスを得る一方，当社の事業部技術者を交えて将来像を考えていく貴重な機会として，人工知能高等研究所での共同研究を一層進めていきたい。

4．おわりに
企業の中にいると作り手の論理や思い込みばかりが先にたち，近視眼的な判断をしがちである。これは，ユ一ザーにとって本当に重要なことを見落すことになりかねない。

我々が大学に望をものは，企業とは異なった立場を生かし，先進的で，大局的なもの見方に立った研究を進めていただくことであり，企業では得づらい本質的な研究成果を期待している。

そこで得られた貴重な成果を吸収し，製品へ反映することは委託•共同研究を行う我々企業の研究員の役割であると考えている。また，我々企業と共同で研究する事により，先生方や学生の皆さんに研究成果の応用先がイメージいただけるのではないかと考えている。

$3 D$ 似顔生成システムの研究

三洋電機（株）

NB開発センター DSSプロジェクト
プロジェクトリーダー 石川猶也

1．はじめに

三洋電機（株）ではデジタルカメラ画像から顔の立体形状を生成する装置を独自開発し，その応用用途のひとつとして個人の彫像を製作するというビジネスモデルを事業化することに取り組んでいます。そ の中で，まったくリアルな顔の彫像のほかに，その人の特徴をデフォルメして面白くすることで商品の差別化をはかることを目的として興水研究室の顔特徴点抽出•誇張システム「3D－PICASSO（ピカソ）」 との融合を進めています。こうした背景から2000年度より委託研究「顔の 3 Dモデル化とその応用研究」をお願いし，また2002年度より共同研究「顔の感性による評価方法の研究」で連携しています。

2．研究開発の狙い

三洋電機（株）では，2000年2月に28台のデジタルカメラで顔を全周囲から撮影した画像をもとに頭髪まで含めた立体形状を色彩情報とともにデジタル情報に変換する多眼三次元モデリングシステムを発表しました。当社ではこのシステムを「Pierimo（ピエリモ）」と命名し，現在東京•大阪の常設場所の ほか，トラックに搭載してイベント等への出張撮影サービスを行っています。詳細については http：／／www．Pierimo．com をご参照ください。

本システムでは撮影後，当社独自のアルゴリズムによって立体形状を自動生成し，N C工作加工やラ ピッドプロトタイピング装置を用いてリアルな彫像を作ります。写真をもとに生成したデータですので， リアルな顔の彫像ができあがります。

一方，巷で売られているスポーツ選手やタレントのマスコット・フィギュアは，似顔絵や彫刻の才能 のある専門家が，その人の写真をみながら手作業で製作しています。

このような専門家は自身の感性でその人の顔の特徴をつかみ，それを誇張して表現する才能をもって います。この人間の感性に頼らなければならない部分をコンピュータに代行させることによって，デフォ ルメされた似顔フィギュアの受注機会と生産性を高めることが本サービスの狙いです。

また，似顔フィギュアという立体物を製作するためには，NC工作機械やラピッドプロトタイピング装置から三次元形状データへの厳しい完全性が要求されます。これを満足するようにデータ品質を高める

ことによって，コミュニケーションを目的としたコンピュータグラフィックスでの表示など視覚だけに訴 えるその他の用途には十分な品質のデータを提供することが可能となり，似顔フィギュア以外のビジネ スチャンスを獲得していく狙いもあります。個人の立体彫像でもリアルさに少しデフォルメを加えるこ とで，より特徴的でそっくりな印象を与える場合もあります。

3． 3 D 似顔生成システム
多眼三次元モデリングシステム「Pierimo（ピエリモ）」は，写真から顔の三次元形状を復元します。 すなわち，三次元空間内の座標値の集合を自動生成します。この座標値集合から，どこが鼻や口といっ た顔の部位であるかをコンピュータに自動認識させるためのシステムが輿水研究室の「3D－PICASS O（ピカソ）」です。 コンピュータに人間があたかも顔を認識しているかのように動作させるためのア ルゴリズムです。さらに，認識したデータの平均化と個人データの差分をとることによりコンピュータが顔の特徴的な部分を自動抽出し，それを誇張させて立体的な似顔を提示することができます。
（1）基本原理
3 D 似顔生成は「Pierimo（ピエリモ）」で生成した3次元データを自動抽出可能な44特徴点から構成 される 82 パッチにより頭部を 3 次元モデル化して，入力顔 P に平均顔 S との差ベクトル $(P-S)$ を個人的特徴と考え，それに誇張率 b 倍（スカラー）したものを加えることで求められます。（式（1））

$$
Q=P+b \cdot(P-S) \quad \text { 式 }(1)
$$

（ Q, P, S は 44 次元ベクトル）

しかし，この原理から生成される 3 D 似顔絵結果（図 1 （b））には，時折局所的，あるいは全体的に顔 の形が不自然にくずれる現象が現れ，立体造形物である彫像のいびつな個所を削り取ったり粘土で埋め るなどの対処を必要としていました。
（2）似顔生成式の改善
この問題は \｜平均顔—入力顔 \｜としている個人性特徴において，髪や額などの顔全体の特徴点と目，鼻，口などの顔の内部部品の特徴点を同じ重みで扱っていたことによるものです。

そこで式（1）の特徴ベクトルに与える重みを，誇張率 b だけではなくSに付随する標準偏差ベクトル を $\xi(V)$ として式（ 2 ）の通りに補整を行うことで良好な結果を得ることができました（図 1 （c））。

$$
\begin{aligned}
& Q=P+\xi(V) \cdot b \cdot(P-S) \\
&(0 \leqq \xi(V) \leqq 1) \\
&(Q, P, S, V \text { 式 }(2) \\
&44 \text { 次元ベクトル })
\end{aligned}
$$

図2に，誇張率を変化させて立体造形した興水先生の彫像を示します。

図2．立体彫像例

4．おわりに
委託研究の成果として「Pierimo（ピエリモ）」システムと「3D－PICASSO（ピカソ）」との間のイ ンタフェースならびに上記のようなアルゴリズムの進展があった他，特徴点抽出方法についても 2 件の特許（うち1件は海外にも）を出願しました。これらにより顔のスキャニングとデフォルメにおける道具だ てはほぼ完成しました。今後は，その出力結果であるデフォルメ顔が人間の感性に受け入れられる（面白く感じる＝ヒットする）ための評価指標の確立が必要となっています。これについて現在共同研究テ ーマとして取り組みをはじめています。ビジネスに直結したツール開発とそれをバックアップする学術成果との融合により，感性に訴え，超多品種少量生産（極端な場合一品生産）という工業製品の大量生産，大量消費とは全く異なるビジネスモデルの検証を行っていきたいと考えています。

電子システム株式会社の紹介と研究課題動向

【会社プロフィール】
当社は名古屋（本社所在地）および東京•三鷹に首都圏営業部を持ち，東名2拠点で営業展開をしており，今年 4月に豊田オフィスを中京大学キャンパス内に開設しました。この豊田オフィスは産学官共同開発の拠点と位置つけ開設いたしました。

しかしながら当社は小規模な会社であり，本格的な開発を進めるための時間を十二分に確保できずに現在に至っ ております。
今年，当社は会社設立 25 周年を迎えましたが創業以来，視聴覚設備の興隆から全盛時代を経た今でも，主力は AVの延長線上に有る教育用マルチメディアシステムであります。

最近はその関連する周辺システムについて，情報通信機器の併設傾向か強まり，必然的にIT（情報通信技術）化 の方向へ進み出したことは，時代の要請であり，脱AVの拡AVCの仕掛けにもなりました。
現在，当社の一番の強みはAV／ITを中心としたハードの構築でありますが，以前から教育システムのシステム構築用の制御用ハードシステムと関連する制御用ソフトウエアーの開発は，社内で手掛けておりました。
【豊田キャンパスへの足掛かり】
次第にお取引先の先生から教育に関連するソフトウエアー開発を要求されるようになってまいりました。
過去に，お客様の要望によりFnet（クライアント：愛知教育大学附属高等学校，名古屋中学校様）•Lgraf（クラ イアント：名古屋大学様）の 2 種類を教育関連向けの特注ソフトとして開発しました。しかし，当社の販売ネットワ ークの脆弱さから広く教育市場になかなか販売できる状況になく，結果としてクライアントへの販売に終始したの が，現状で残念でなりません。
（教育機間以外では，オリジナル商品として，株式公開企業向けには株主総会サポートシステムを販売しています。）
その後，ソフト開発の重要性を認識し，その流れを汲んだ形で今年は中京大学様の豊田キャンパス内に産学共同事業の基地として，ソフトゥエアー開発の拠点を新たに設置した次第です。
現在，開発担当は今年4月に中京大学大学院を卒業した山中が中心的な存在であり，サポーターとして，小野と首都圏営業部在住の本田（両名とも中京大学出身者）で錪成しています。
豊田オフィスの責任者は北岡取締役がチーフで，木下課長が補佐役となっています。
現在の開発テーマは産学共同開発のテーマとして【バーチャル講義参加のためのソフトウエアー】を開発中です。 ソフトはほぼ完成しており，今年12月に三重大学で開催されるLET（外国語教育メディア学会）においてお披露目 をする計画です。

このソフトウエアー開発は長谷川先生ご指導の元に，実際は今年8月ごろから開発を開始いたしました。
【開発テーマのジレンマ】
実際に開発と言いますが，最初はどのようなテーマにするのかを社内でテーマを募集しましたが，なかなか妙案 （アイディア）が出ない状態で数ヶ月を経過してしまいました。

担当者や責任者は焦燥感が次第に増幅される中で，手っ取り早いAVシステム制御のアイデア（？）の提案もあ りましたが，旧来の発想の延長では新しい展開や希望がありません。

社内の批判の中で，テーマ問題でつまずき遅々と進むことができずにいましたが，次第に3つほどのテーマに絞ら れてきました。

第1は遠隔講義システムの制御ソフトウエアー
第2は電子百科辞書
そして第3のバーチャル講義参加ソフトが出てまいりました。

豊田オフィス

豊田オフィス入口

第3のソフトウエアーを決定した経過は，長谷川先生と開発部員とが，ディスカッションを進める中で，第3提案 のバーチャル講義参加ソフトを開発する結論が打ち出されました。 そして商品化の目標は年内という，厳しい目標を打ち立てました。
時間の計画との戦い（大げさですがそのような気持ちでした）を進めながら，先生のアドバイスをいただき，実質 4 ヶ月ほどの開発時間で目標地点までたどり着きつつあります。研究開発とはいえ，我々は企業体でありこの開発商品をいかに，市場で支持を得ながら販売か，また附加価値を生み出すかに今後は，戦術が必要になってまいりま した。
当面は，既存の取引の大学様への販売実演（デモ）を企画しご批評をいただきながら，新たにカスタマイズして いけば，開発部門として今後への第2弾，第3弾の新しい商品開発への継続•持続を打ち出せると確信しています。
いずれにしても，ユーザーである大学の先生のご意見を謙虚に請け賜りながら，顧客満足の高いオリジナルソフト商品の展開を進める所存です。

【バーチャル講義とは】
【コンセプト】
今までのPCを使用した授業支援ソフトでは，使用できる場所が PC教室などのようにPCがある場所に限定され てしまいます。そこで，今回我々が研究開発するシステムでは，PC教室に限らず一般教室などPCが無くても使用 できるようなシステムを考えることにしました。

ここで，一番問題になるのは，回答をどのように収集するかということです。この解決策として，現在普及率の非

常に高い携帯電話のメール機能を使用することを考えました。
【システム概要】
プロジェクタなどを用いて大画面に問題（質問，アンケート等）を表示し，その回答を携帯電話などのメール機能 を用いて回収し，リアルタイムで回答の表示やグラフ表示を行うシステムです。（システム構成図参照）

【特徴】

- 解答端末に携帯電話を使用することにより，パソコン教室でなくても使用できる。
- メールが受信できるパソコンが 1 台あれば OK
(サーバとクライアントを一緒にしたとき)
- 出題の形式は，記述式，選択式（択一，複数選択）が可能
- 選択式の回答のグラフ表示が可能
- 記述式の回答のキーワード検索が可能

図1．システム構成図
【自己満足に終えないこと】
経験の無い新しい事業にかかわりながら，バーチャル講義参加ソフトは，一つの区切りとして今ゴールを迎えよう としています。まだまだ，手直しを行い自己満足に終えないよう，ユーザーニーズを間違えないように，進める必要 があります。

今回，大学を卒業したばかりで経験も浅いところでなく，全くの素人と言ってもいいくらいの立場の担当者でし たが，かえって素人的な考えや先入観が無いことが幸いしたことも，否めません。

また，開発に専念する時間も満足に無い環境で，効果的に時間を工夫した努力は称えなければなりません。
今後は今回の経験を踏まえて，開発に対して時間軸をより効果的に構築することが可能になりました。
そして，新しいユーザーニーズに挑戦し，その要求される事項に対して具現化する会社の環境や姿勢は今後も当社の《DNA》として，増幅されてくると思います。

今回の挑戦が実行できたこの経験値や行動軸か継続し，インキュベートできれば次世代の《AV•IT》へ展開し ていく道を開くことが可能であると信じ，大学の先生ご指導，ご支援を仰ぎながら大きく開花できること，念じなが ら中間のご報告を終えます。

ありがとうございました。（文•産学官共同開発責任者 専務取締役•星月征男）

企業連携による製品開発事例

株式会社リフレクション鈴木常彦

はじめに
弊社における最近の研究開発状況を紹介させていただきます。
昨年は，財団法人デジタルコンテンツ協会殿のコンテンツ制作基盤技術等開発事業として，「メタデ ータによる地域情報統合環境一知多半島コンテンツバブー」に取り組みました。この事業の成果として，

- 地域情報メタデータ「ChitaCore」およびメタタグ付与ツール
- 地域指向サーチエンジン

を開発することができました。現在，この成果をベースとして，「リバースキャッシュとメタデータに よる地域コンテンツ配信システム」に取り組んでおりますが，これについては，別な機会に報告させて いただきます。

今回，御紹介させていただくのは，

- サーバ遠隔操作用ボード「TEC999」の開発
- WebReflectionのセキュリティ拡張「ReflectionBOX」の開発 の 2 件についてです。

1．TEC99－ベンチャー協業による製品開発事例—
弊社はデータセンターを利用して，サーバ預り運用代行サービス，負荷分散サービス「WebReflection」（レンタル・リバースキャッシュ・サービス）を行っています。私達の事業で問題にな るのは，トラブル時に如何に迅速な対応がとれるか，というものです。

トラブルの多くはインターネットを通して，遠隔で対応可能なのですが，時折，インター ネット経由のアクセスが不能となり，データセ ンターに駆けつけ，コンソールを接続して対応 するしか手の打ちようがない場合があります。

こうした自らの運用上の経験から，発案し たのが「TEC999」（写真1）です。これは， サーバのコンソール画面（VGA出力）とキー ボード（PS／2）を，PHSを介して運用者の手

写真1．TEC999

もとのパソコンに接続し，遠隔操作を実現するパソコン用内蔵ボードです。
VGAをキャプチャしているだけなので，従来は難しかったBIOSやブート画面の遠隔操作も可能で，電源のON，OFFも可能など，MTTR（平均修理時間）の大幅な向上に役立つ製品です。Bluetooth も搭載可能で，PHS1台でラック内 40 台までの操作が可能です。

「TEC999」は本年11月より発売を開始しましたが，この製品の開発，販売は複数のベンチャ，中小企業による以下のような提携の成果です。

1．提案，発明者，技術コンサルティング：（株）リフレクション
2．特許出願，プロジェクト推進，開発元：（有）エスアンドエムコンサルタント（SMC）
3．製造元：和諧國際科技份有限公司（Harmonix Inc．）（台湾）
4．販売：（株）ソフテック・インターナショナル
経緯を簡単に紹介します。2001年秋，ベンチャ2社（リフレクションとSMC）の企画会議でTEC999 の開発を計画し，すぐに設計に入りました。国内での製造はコスト面で困難と判断し，2002年1月に，製造のための会社（Harmonix）を台湾に設立しました。実際にはHarmonixはファブレスであり，実際の製造は日本のメーカーの現地法人に委託となっています。さらに，ベンチャーが在庫と販路を確保 するのは困難なため，販売についてはソフテックとの協業としました。

この製品の販売実績はこれから作って行かねばなりませんが，一ベンチャーでは厳しいハードウェア開発を，このように，台湾も含め複数社の連携で販売まで進められたことは，弊社にとって大きな成果で した。

「TEC999」については，http：／／www．tec999．com／を御覧ください。

2．WebReflectionのセキュリティ拡張「ReflectionBOX」の開発
ReflectionBOXは一種のファイアウォール装置として機能するオールインワン・サーバです。従来の ファイアウォールではWWWサーバへの通信が素通しだったのに対し，本製品は，NIMDAやCodeRed など，WWWサーバを狙うアタックを防御するのに有効であるのが特徴です。

これは，弊社の負荷分散サービス「WebReflection」をベースにしています。WebReflectionはリバ ース・キャッシュという技術を用いています。これは，オリジナルのWWWサーバのコンテンツをキャッ シュし，オリジナルWWWサーバの「ふり」をするものです。クライアント（ブラウザ）から，キャッシュ にないデータのリクエストを受けた際には，オリジナルのWWWサーバにリクエストをリレーしてその結果をクライアントに返します。

ReflectionBOXは，WebReflectionと同じ仕組みですが，脆弱なサーバの手前に配置し，リクエスト のリレーの際に，悪意のあるコードをブロックすることにより，オリジナルサーバの脆弱性をカバーする ことが可能となります。

昨年，中京大学との共同研究でWebReflectionを改良し，地域指向サーチエンジンを開発しました が，その際に得た，キャッシュ制御のノウハウが「ReflectionBOX」に活きています。

CGラボにおけるロボット実験擐境

情報科学科 講師 清水 優

1．はじめに
医療•介護ロボット，競技用ロボットやエンタテイメントロボットなど，ロボット関連の研究•開発 は，近年ますます盛んになってきている。中京大学（豊田学舎）の近隣大学でも，RoboCupへの参加 を目指したロボット製作を行っている研究室は少なくない。比較的簡単にロボット製作を行えるように なった背景として，CPU や周辺デバイスの小型•低価格化，扱い易さの向上，ホームページでの情報交換などがあげられる。加えて，ロボットの動作調整や移動経路の記録のための実験環境（これもPC や画像処理ボードの高性能•低価格化によって整備しやすくなった）の充実もあげられる。例えば，ロ ボットに搭載する自己位置検出装置の研究では，天井などに取り付けたカメラからの映像で得たロボッ トの客観的な座標とロボット内部で検出した自己位置を時系列で比較できると効率良く装置やプログラ ムの調整を行うことができる。また，複数のロボットの移動経路を時系列の座標データとして記録でき れば，ロボットによる協調作業の実験や群ロボットによる集団行動のシミュレーション実験などでも記録を正確に残すことができ，実験結果の評価をより高いレベルで行うことができる。この様に，実験環境を整える意義は大きい。
本報告では，より活発なロボット研究の場を提供するために，人工知能高等研究所 2 F CGラボに設置したロボット実験環境について報告を行う。なお本ロボット実験環境は，認知科学科棚橋純一教授と情報科学科清水優講師の協同実験スペースとして設置申請を行った。

2．ロボット実験環境の目的

このロボット実験環境の目的は，実験場内を移動する複数の中•小型ロボットの位置測定や移動経路 の記録である。具体的には「床上を移動するロボットの座標を，天井から床を撮影するカメラで得た画像から算出し，時系列で記録する」ことである。加えて，「ロボットの上面に取り付けた色標識による，複数のロボットの識別」も行う。

しかしそれだけの機能があれば，例えばリアルタイム性を生かしてRoboCUP小型機リーグの様なグロ ーバルビジョンとしても利用できるし，単純に「動き」情報の入力•記録装置として利用することもで きる。さらに，本実験環境のシステム構成（詳細は以下参照）は，基本的には天井に設置したカメラと画像処理ボードと PCであるから，通常の画像処理装置としても問題なく利用できる。ロボット実験以外の利用に関しても，幅広く利用者やアイデアを募る予定である。

3．実験環境概要

床上を移動するロボットの重心座標を天井カメラで得た画像から算出して時系列で記録し，さらにロ ボットの上面に取り付けた色標識によって複数のロボットを識別するためには，高速かつ複数の色抽出 を同時に行う画像処理ボードが必要となる。また，ある程度の広さの床（今回はCGラボ空きスペース の都合で $3 \mathrm{~m} \times 3 \mathrm{~m}$ とした）を撮影する天井カメラも必要である。そこで，画像処理ボードは複数色の同時抽出機能を持つ日立VP910，天井カメラは焦点距離 2.8 mm の超広角レンズ（TG2Z2814FCS－2）を取 り付けたSONY製CCDカメラ（SSC－DC430）を用いた。図1にシステム構成の概略図，図2に実験環境の全景を示す。

画像処理ボード
\＆PC
図1 システム構成概略図

図2 実験環境全景

4．現状報告

現在（2002年11月中旬），カメラと画像処理ボードを搭載したPCの設置と画像処理ボードによる色抽出の予備実験，およびカメラキャリブレーションプログラムの調整が完了したところである。以下で は，カメラキャリブレーションと複数色の抽出およびトラッキングの実験について報告する。

4． 1 カメラキャリブレーション

超広角レンズを用いると図3のように樽型歪みが発生し，このままでは座標計算の原画像としても記録用画像としても不適当である。そこで，カメラ光軸を床と垂直に合わせ，単純な放射状歪みとしてモ デル化できるようにした上で，以下の放射状歪みの近似式を用いて歪みの無い画像へ変換する［1］。

$$
\binom{\tilde{u}}{\tilde{v}}=\frac{2}{1+\sqrt{1-4 \mathrm{k}\left(u^{2}+v^{2}\right)}}\binom{u}{v}
$$

ここで，\tilde{u}, \tilde{v} は歪みあり画像の座標，u, v は歪みなし画像の座標
k は歪みの大きさを表すパラメータ

調整の結果，パラメータkはー0．00000220であることがわかった。図3の歪みを除去した画像を図4に示す。図4の状態であれば，画像中の1画素と床の位置を対応付けることが可能である。ただし，この変換はPCで行っているため，画像処理ボードの色抽出処理と比べて非常に時間がかかる。画像処理ボー

ドは非常に高速に色抽出を行うが，PCでの歪み除去処理では約 3 画面／秒程度に速度が低下する。今後，歪み補正アルゴリズムやCPU速度の向上によって，可能な限り高速化を行う。

4． 2 複数色の抽出およびトラッキングの実験

本実験環境では複数台のロボットを識別するために，ロボット上面に 1 台ずつ色の異なるカラーマー カを張り付け，画像処理ボードでマーカの色を識別することにより，複数台のロボットの同時トラッキ ングを実現する。画像処理ボードVP910には，複数の色を同時に抽出する機能があり，これを利用して高速に複数色抽出を行う。図5に示す実験結果では，黄色と水色のカラーマーカ（ 1 辺約 5 cm の正方形）を付けたロボットの軌跡を表示した。1台は画面下方から上方へ，もう1台は左方向へカーブを描い て移動した。図6に，実験終了時のロボットを示す。

図5 2台のロボットの移動軌跡

図6 実験終了時の様子（図5と天地は同じ）

5．今後
今後は，歪み除去した色抽出結果からロボットの座標を算出し，時系列で記録する処理を早急に完成 させ，座標の精度についても調べる予定である。
本実験環境の利用予定としては，清水研究室で行っている加速度せンサによる小型移動ロボットの自己位置検出に関連する研究と経路探索に関する研究などがある。

また，今回本実験環境のプログラムを作成する段階で得たVP910画像処理用関数やWindowsGUI やイベント処理，ビットマップ表示関数などのノウハウを広く紹介し，本実験環境の利用を促進してい く予定である。

謝辞

CGラボでのロボット実験環境の構築を承諾してくださった，人工知能高等研究所CGラボ委員会お よび所員の方々に感謝いたします。また本実験環境の趣旨に賛同していただいき，多くのアイデアとご指導をいただいた情報科学部認知科学科 棚橋 純一教授，同情報科学科 輿水 大和教授，嶋田 晋助教授に深く感謝いたします。

【参考文献】

［1］FEST Project 編集委員会（輿水大和編集委員長）：＂新実践画像処理＂，株式会社 Linx出版事業部（2001年6月6日）

産学協同ネットワーク推進委員会
 ～地域と世界に開かれた研究拠点に ふさわしいネットワーク環境の整備～

委員長 長谷川純一

鈴木 常彦

人工知能高等研究所（以下，IASAI）は，2002年4月，産学協同研究の推進拠点にふさわしいネットワークとは どうあるべきかを検討するため，「産学協同ネットワーク推進委員会」を設置しました。産学連携を目指す研究所は地域と世界に広く開かれていることが必要であり，そのためには，人的ネットワークとともに情報通信ネットワーク を重要な交流基盤として整備していかなければならないと考えたからです。本稿では，この委員会設置の背景と意義 についてもう少し詳しく述べたいと思います。

日本の産学連携は総じて欧米に較べ不十分であるといわれています。大学から産業界への技術移転，あるいは産学連携による新技術の創造を進めるためには，ありあらゆる方面との連携が必要なことはいうまでもありませんが，日本の産学連携の大きな欠点の一つとして，「地域」における連携体制，すなわち「テクノリージョン」づくりができ ていないことがあげられています（＊1）。

IASAIがテクノリージョンの核となるためには，地域の研究者や企業家と密接なコミュニケーションが日常的に行 える環境が必要です。これは交流サロンのようなリアルな「場」づくりがまず必要でしょう。サロンの活性化は，地域にとって非常に重要です。しかし一方で物理的な「場」は常にアクセスが可能というわけにはいきません。リアル なサロンを補完するものとして，通信ネットワーク上でのコミュニケーションを活性化させることが重要です。

また，研究開発そのものを支援するツールとしてもネットワークが必須の要素であることはいうまでもありません。
e－Learning，テレイグジステンス，GIS，VR，遠隔医療，P2P，分散データベース，ITS等々，あらゆる研究開発とその成果公開において，地域の複数拠点あるいはインターネットで世界を結ぶネットワークの整備が求められます。

さて，ではどのようなネットワーク環境が必要なのでしょうか。現在，人工知能高等研究所は文部科学省管轄の国立情報学研究所学術情報ネットワーク（略称SINET）に中京大学のネットワークを通して接続されています。 SINETの加入規定によれば，

一 国，公，私立等の大学，短期大学，高等専門学校，大学共同利用機関等
二 研究所の事業に協力する機関
三 国公立試験研究機関，研究又は研究支援を目的とする独立行政法人及び特殊法人等
四 前 3 号に定める機関と共同で研究等を行う機関
五 学会，学術研究法人及び大学に相当する教育施設等
六 研究を目的とするネットワークの参加機関
七 その他国立情報学研究所長（以下「所長」という。）が適当と認めた機関

は，これを利用することができます。従って，IASAIに所属する機関，企業は，中京大学との共同研究の範囲内 においてはSINETが利用でき，SINETを通じてインターネットとも通信が可能です。しかし，SINETをバックボーン （外部接続綱）とする現在のネットワークは，IASAIにとって十分なものではありません。

共同研究に参加する企業にとっては，通信のすべてを共同研究の範儔に限定できるものではありませんし，大学 と企業の間の通信の帯域，信頼性，機密性いずれも十分とはいえない状況です。

これを解決するため，本委員会では来年度へ向けIASAIの商用ISP（Internet Service Provider）への接続を検討中です。しかしながら，単に商用ネットワークに接続すれば，産学連携のネットワーク環境か整備されるというわけ にはいきません。

これには，日本のインターネットの歴史と構図に基づく，根の深い問題があります。

日本のインターネットは東京を中心として，放射状のネ ットワークとして整備が進んで来ました。地域プロバイダも この放射状にバックボーンを広げる大手ISPにバックボーン を依存しているところがほとんどです。

また，SINETでは，東海地域において名古屋大学が接続点となり，地域の大学•研究機関約70サイトが放射状に接続されていますが，その大部分はいまだに128kbpsあるい は1．5Mbpsという細い専用線を利用しています。
（http：／／www2．itc．nagoya－u．ac．jp／nice＿cc／ichiran．htm）
これらのネットワークの中心にあるのは東京の大手町に拠
点をおく，IX（Internet eXchange）と呼ばれる相互接続点であり，豊田市にあるIASAIと名古屋市の企業の間の通信も，東京を迁回する構図（トポロジー）になっています。（図1）

この褠図を見れば，地域の大学，企業がIASAIとの間でネットワークを利用した研究開発や各種プロジェクト（例 えば遠隔授業，遠隔医療，e－Learning等）を行おうとしても，十分なパフォーマンスと自由なネットワーク構成が得 られない状況であることが分かります。中京大学あるいはIASAIだけが高速なネットワーク接続をしてもこの問題の根本的な解決にはなりません。

この状況を打破するには，地域全体が相互に高速に接続されることが必要です。そのためには東京を迂回する現在のインフラに依存しているわけにはいきません。地域として独自のネットワークが必要です。

このため，本委員会の一部のメンバーと，名古屋大学を中心とする地域の大学の有志が集まり，現在，「中部アカ デミックネットワーク」という構想を練っている最中です。これは，現在の東海地域における大学間のネットワーク を高コストパフォーマンスなものに再構築するとともに，地域の企業が利用するネットワークとも相互接続し，産学協同のためのインフラとなる地域ネットワークにしようというものです。（図2）

この計画が実現すれば，現在 1.5 Mbps 程度の地域ネットワークが，100Mbps程度へ向上することになるでしょ う。そうなれば，電子会議やネットワークを使った研究が不自由無く行えるようになることが期待できます。冒頭に述べた趣旨から，IASAIとしてもこの中部

CREST（戦略的基礎研究推進事業）：

高度メディア社会のための協調学習支援システム
Collaborative learning support for the advanced media society

中京大学情報科学部 認知科学科 三宅なほみ

CRESTは，21世紀の科学技術に対する期待に答え，政府の研究開発投資を補充するために，特殊法人科学技術振興事業団が集めた出資金を活用し日本の基礎研究の抜本的強化を図ろうとする目的で平成 7 年度に始まった事業である。科学技術庁が示す5つから6つの戦略目標に対して事業団が 20 程度の研究領域を設け，各領域が毎年5から 10 程度の研究課題を選抜する結果，毎年 250 程度の研究テーマでの研究が推進されてい る。一つの戦略目標は3年間に瓦って研究を公募する。採択された研究には年間平均 4 千万から 2 億程度が支給され，研究期間は5年を限度とする。ここで紹介する研究は，長尾真京大学長を研究統括とする研究領域「高度メディア社会尾生活情報技術」に属する研究課題として平成11年度に採択，平成12年7月に開始され たもので，本年度中間評価を受け，平成17年3月末に終了予定である。

はじめに
本プロジェクトでは，認知科学を基にした学習理論を応用して，自己学習管理能力，問題解決能力，他人 の考え方をうまく取り入れて新しい発見を生み出す適応的な知力を育成する協調的学習支援システムを開発 しようとしている。協調的な知識構成過程には，ひとりひとりが自分の考えを積極的に外化し，他人の考えと比較•吟味し，それぞれの間の関連をつけて統合するステップが含まれる。この研究ではマルチメディア技術， ネットワーク技術を活用してこれらの活動を支援する。

研究は大きく三つに分けることができる。まず学習を認知科学的，情報科学的に捉え直して，人が複数で考える時，そこにどんなプロセスが起きてどういうメリットが生じるのかを明らかにし，協調過程の強みを生 かしたその支援方法を明らかにする。ついでその成果を利用して大学での協調的学習支援方法を工夫し，そ れを支援する情報利用技術を開発し，実際大学の授業において運営評価する。これら実践の蓄積の上にネッ トワーク上で広く学ぶことのできる教材十学習支援環境十カリキュラムのせットを開発評価する。

協調活動から賢さを引き出す支援を考える
本プロジェクトでは，人がどのような条件でうまく学ぶかの観察と分析に立ち戻って学習理論を作り，その支援方法を検討する。中でも，単に決められた仕事を効率よくこなせるだけでなく，状況や問題が新しくなっ ても過去の蓄積を活かして柔軟に対応できる適応的なエキスパート（Hatano，2002）の育成過程を明らかに したい。適応的エキスパートは，長年繰返し同じような問題を少しずつ異なった形で解決してきた経験に対し て，それらを整理して抽象化し，そのうまくいっているところとそうではないところを切り分け，うまくいっ ているところを部品化した結果，柔軟で組換え可能な知識を身につけていると考えられる。そのような柔軟な知識の獲得には，自分のやり方や考え方を振り返り，吟味して抽象化し，再構成する過程が含まれているだ ろう。本プロジェクトでは，こういった知識獲得を促進する一つの方略として協調的な認知活動の活用を考え

ている（Miyake，2001；Miyake，et al．，2002）。
協調活動がうまく行く場合には，参加者各自が自らの考えややり方を相手が了解可能な形で外化し，互い に相手が外化したアイディアややり方に対して本人が見ているのとは少し抽象度のレベルの異なる解釈を与え ることより，段階的に抽象的な理解が生まれることか観察されている（Shirouzu，etal。2002）。これを上記 の知見と統合すると，協調過程を利用して柔軟な理解を引き起こす学習環境では，

- 個人の知識や，認知活動の外化
- 外化されたものと自分の知識，活動との比較吟味
- 外化されたものの共有，統合，組み替え
- 学習結果の適応的（応用が効く形での）抽象化

などのステップを支援する必要があると考えられる。こういう認知活動が実際授業の中で起きるためには，授業中の学習活動を工夫したり，記録を残して共有吟味するためのツールを開発することが必要である。

以下に，上記を踏まえて現在開発中の協調学習活動を支援するためのシステムや，私たちが実際行ってい る学習活動の工夫について，その詳細を紹介する。

協調学習支援システム
1）個人知識のテキスト化による外化支援
授業中など日常的に記録可能な思いつき，簡単 な作業の記録，メモなどを，そのつどテキストの形 で電子化できる環境を整え，定期的にそれらの間 の関係付けを行って，「個人の知識」の外化，再吟味，統合を計る。これを小グループで共有し他人 の知識を日常的に互いに吟味しあう「共有知識空間」を作り，活用する。

外化支援システムがもつべき基本機能として，

- アイディアをカードに記録できること
- カードを二次元空間に自由配置することによ って相互に関連付けること
－カード，関連付けの両方にコメントが付けら

図1：テキストを中心とした外化支援ツール
Reflective Collaboration Note II（ReCoNotell） れること

- アイディア，コメントのすべてが検索できること
- カード上のカードの見えを「見出しのみ」，「内容とも」など必要に応じて変えられることなどが考えられ る。これらを充足するシステムとして，テキストを中心とした外化を支援するシステムReCoNoteIIが開発さ れている（図1）。

ReCoNoteIIでは，個人のカードの他に資料やグループのカードなどが作成でき，それぞれネットワーク上 で共有可能である。さらに，互いのカード間にどのような関連があるのかを明示的にコメントとして入れた関係づけを作成し，共有できる機能を備えている。

2）ビデオ資料を効率よく扱うための支援

学習活動の外化と振り返りのための一手段として，本プロジェクトでは数多くのビデオ資料を扱う。教材ビ

図2：ビデオ資料を効率よく扱うための支援ツール Commentable Movie Sheet（CMS）

デオ資料だけでなく，研究の対象となる授業や学生の協調学習活動そのもののビ デオ記録も内省的な吟味に活用できる。 そのため本プロジェクトでは，図2に示 すような，ビデオ資料の必要部分をクリ ップレそこにアノテーションをつける Commentable Movie Sheet（CMS）を開発した。
対象となるムービーは，前後のフレイ ムを監視できるトレイル・ビュー（左欄中央）かまたは普通の再生ムービーとし て視聴できる。タイムフレイム情報（左下）も利用できるが，ムービー再生窓下 のスライド・バーとボタンを使って直接䤡 を入れる感覚でクリップでき，それらを繋いで新しいムービーを作成できる。クリップには，発話記録，分析 コード，コメント，コメントに対する返答などさまざまな情報を付加できる（図2上）。右下に示すように，こ れらの情報は次に説明するMMD上に置き換えることができる。ここでは，プレゼンテーションなどのために， コメントを赤丸で囲むなど，一時的な上書きが可能である。

3）資料の共有•相互吟味による知識構成の支援
自作，既存に関わらずテキスト，図版，音声ファイル，ビデオ資料などを組み合わせて自分の考え方を外化 し，他人の外化と比較吟味して組み替えるなどの知識構成活動を可能にするための統合システムが Collaborative Reflection System for Multimedia Documents（CoRef－mmd）である（図3）。

図3：資料の共有•相互吟味による知識構成支援システム Collaborative Reflection System for Multimedia Documents（CoRef－mmd）

CoRef－mmdでは，資料が見出しとと もにグラフシートと呼ばれる空間の任意 の位置に配置され，それらを矢印付きの線で関係付けることができる。資料，関係付けともにアノテーションをつけること ができる。アノテーションは，鉛筆マーク で示され，マークをクリックすることによ って左下の窓でその内容を確認できる。 シートは包含可能である。
各資料をダブルクリックすると，その内容が別ウィンドウに呼び出される。シ ート全体をズーム・イン，アウトできるだ けでなく，シート上の各資料は，図3の左上にスーパーインポーズされているグ ラフ・ビューに見られるように，三次元空間に配置できる。CoRef－mmdはまた，

このカード配置や位置制御など全操作の履歴を保存し，再生する機能を持っており，それによって認知過程 を振り返ることができる。作製したシートは，web上に公開可能である。

実践評価

上記のような技術的支援を実際の学習活動に活かすためには，それらを効果的に運用するカリキュラムとそ のための教材の開発が必須である。本研究では「認知科学」のいくつかの授業を通じて，人間の認知機能（賢 さ）についてその仕組みを理解し自分自身の学習を自己管理できるメタ認知能力を獲得させるような協調的学習カリキュラムを作製，実施してその効果を検討している。

今年度は，学部2年生 80 名を対象とした認知科学の入門的な授業でReCoNoteIIを，また学部3年生 18 名が参加した協調的認知活動•学習科学をテーマとするセミナー活動でCMS，CoRef－mmdを利用した。どちら の授業でも，これらのシステムは学期の後半にそれまでいろいろ調査してきた結果をまとめて自分たちの記録 とし，またそれを使って他人に自分たちの考えを説明するための提示資料を作るフェイズで導入された。いず れのクラスも類似のシステムを使ってグループで協調的にまとめを作るなどの活動を経験したことがある。従 って導入方法も，基本的な機能の解説を短時間行い，技術補助者を数名配置して，学生がシステムに慣れて くるに従ってより高度な使い方を紹介するなどの形で段階的に行った。
いずれのシステムも積極的に受け入れられ，学生たちが自分たちのやりたいことに従って機能を独自に工夫 して利用する姿か観察された。特にCoRef－mmdでは，一枚のグラフシート上にまとめた資料を3次元に展開 し，まとめの発表時にそれらを段階的に提示した利用方法も現れ，学生たちがきわめて短時間に学習活動の目的に従ってこれらのシステムを使いこなせる可能性が示された。これらの授業の一回一回の教案（教員側か らどのような話しをどのタイミングで行い，学生にはどのような活動を要請するかを時間配分とともに示した もの），教室内配布資料，クラス活動の概要，教員とTAによる活動観察記録などを授業と併行して収集し，今後の授業改善への検討材料としている。これらは将来的に本研究の成果の一部として，他校での実践でも利用可能な形にまとめたいと考えている。

一連の学習支援ツールに関してはいずれのインターフェイス部分もまだ学部学生が直感的に使えるレベルに は至っておらず，更に追加したい機能もある。現在授業中の活動記録や受講生からの試用経験についての聞 き取り調査などを対象に利用効果を検討し，改善点をまとめている。今後これらの経験に基づいてシステムと カリキュラムをともに改定し，より実効力のある実践を目指したい。

文献：
Hatano，G．（2002），Expertise，adaptive．In Encyclopedia of Education（2nd ed．）．New York： Macmillan．
三宅なほみ（2000）「学びの科学」へ向けて，『季刊インターコミュニケーション」， No．31Winter 2000，106－111．東京：NTT出版．
Miyake，N．，（2001）Collaboration，technology，and the science of learning：Teaching cognitive science to undergraduates，教育心理学年報40，218－228．［英文ページ；in English］
Miyake，N．，et al．，（2002）Intentional integration supported by collaborative reflection， Proceedings of CSCL2002，605－606．
Shirouzu，H．，Miyake，N．，\＆Masukawa，H．（2002）＂Cognitively active externalization for situated reflection．＂Cognitive Science， 26 （4），469－501．

三宅なほみ研究室ホームページ：http：／／www．crest．sccs．chukyo－u．ac．jp／index．html電子メール：nmiyake＠sccs．chukyo－u．ac．jp

研究動向紹介

顔サーフェスデータのデフォルメ手法

中京大学 情報科学研究科 情報認知科学専攻 舆水研究室
藤原孝幸

1．はじめに
ユーザインタフェースとして顔メディアを用いる可能性が示㖫され，顔の認識•生成技術が注目されている。 ま た，顔の造形に関しても，単にオリジナルを生成するよりも，若干の手が加えられることが付加価値として考えられ る。 当研究室では，三洋電機株式会社との共同研究によって，顔の印象をも造形するシステムの開発 ${ }^{[1,2]}$ に取り組んでおり，3次元上の顔サーフェスデータに対しての誇張処理を実現している。

2．デフォルメ手法
輿水研究室では顔の特徴抽出の応用として，似顔絵生成に関する研究を盛んに行ってきている。コンピュータが人物の特徴的な部分を捉え，誇張させ似顔絵を呈示するというシステムが構築されている。 顔データが似顔絵たり うるか否か，息の長い面白いテーマがあろう。 さて，我々の用いている，個人特徴を導出するための似顔絵生成式 は，式（1）のように示され，非常に単純明快である。

$$
\begin{equation*}
Q=P+b \cdot(P-S) \tag{1}
\end{equation*}
$$

この式では，P を入力顔，S を複数の入力顔から平均を取った平均顔として，Q の似顔絵を生成している。 平均顔は基準顔とみなされ，（ $P-S$ ）によって平均顔との差を個人的特徴として算出し，誇張率なるどれだけ誇張の度合 いを強くするかのパラメータbの値によって，デフォルメのベクトルを計算する。 上記においては，P, S, Q をそれぞ れの顔と示したが，実際にはこれらの「顔」がいかに記述されているかが問題となる。 最終的な似顔絵の生成結果 が「顔」らしくあるのは当然であるが，似顔絵の生成を行うための制御点をどのような記述フォーマットにするのか， つまり顔の情報をどうのように記述するかの考察も非常に面白いテーマだと考えている。例をあげればテクスチャ情報であるのか，顔画像内の座標値であるのか，これらはおそらく記述された情報が顔のように見えるであろうが，顔 の情報を記述するためだけであれば顔と視認できない記述フォーマットも考えられる。

我々のシステムでは図1，2のような30，000の三角ポリゴンで構成されたサーフェスデータに対する処理を行ってい る。テクスチャマッピングをすることも可能であるが，顔の凹凸を見やすくするため顔のテクスチャは貼り付けてい ない。 さて，この30，000ポリゴンの顔情報をいかに記述するかである。30，000次元の（ x, y, z ）座標データ（実際に は重複するため，20，000弱であるが）をそのまま記述フォーマットとするには，ポリゴンリダクションのアルゴリズ ムなどの関係もあり，万人の顔で「 N 番目の座標点は，鼻頂点を表していますよ」などとする記述法は困難であろ う。また我々の過去の取り組みでは，そのように詳細な記述とした場合，式（1）の似顔絵生成式では非常にグロテ スクな似顔絵生成結果となることも報告され，このケースでもそれが予想される。そこで，30，000ポリゴンのサーフ ェスに対して，画像処理手法を適用し，図3～5のような特徴点で構成されるワイヤフレームモデルを，顔記述のフ オーマットとすることにした。図4の特徴点が図1のサーフェスデータから自動生成ており，この44特徴点，82面で構成される記述モデルは，目，鼻，口の領域や，顔の輪郭など入力顔ごとに適した3次元座標上で配置される。 44特徴点では制御点としては少ないように感じられるかもしれないが，82面の三角形と設定された原点で構成される3

角錐の内側にはサーフェスデータが格納され，それぞれの対応関係を有している。式（1）と同様に，図5が生成さ れた後，図4と図1の位置関係が図5と図2への位置関係へとアフィン変換されることで，図5のデフォルメされたサ ーフェスデータ，つまり似顔絵が生成される。

3．おわりに
我々の研究成果が認められ，今年の10月に芸術科学会大会と併催された第18回NICOGRAPH論文コンテストに おいて，最優秀論文賞を頂くことができた ${ }^{[2]}$（図6）。これからの更なる研究への励みとしたい。

図1 入力顔のサーフェスデータ

図2 似顔絵のサーフェスデータ

図3 平均顔の特徴点

図4 入力顔の特徴点

図5 似顔絵の特徴点

図6 第18回NICOGRAPH論文コンテストで頂いた表彰状

【参考文献】
［1］藤原孝幸，舆水大和，藤村恒太，藤田悟朗，野口孔明，石川猶也：3D似顔絵フィギュア製作の実用化の試み，情報処理学会論文誌，Vol．43，No．SIG 4 （CVIM 4），pp． 85－94（2002）
［2］藤原孝幸，輿水大和，藤村恒太，藤田悟朗，野口孔明，石川猶也：＂3D似顔絵メディアのフィギュア製作技法＂， NICOGRAPH論文コンテスト 2002 ，pp．47－52（2002）

会議報告

第87回情報科学部コロキウム

「言葉というリソース——ネットワークはことばの集水地」

細馬宏通氏（滋賀県立大学人間文化学部・コミュニケーション論）於：情報科学部メディア科学科1階多目的スタジオ（2002年10月24日）

今回のコロキウムでは，滋賀県立大学の細馬氏を招き，氏の人間行動学および会話分析・ジェスチャ一分析の見地からネットワーク上の「ことば」を考える講演が行われた。

「我々人間は，常に＂新しいことば＂を使って会話しているわけではなく，使い古されたことば，つま り同じ記号（繰り返し）を異なる文脈に投げ込むことでコミュニケーションを行っている」——と，会話・ジェスチャー分析で近年注目されている「集水地（Catchment）」の概念が紹介された。コミュニ ケーションの場＝会話とは，お互いが水をためるようにことばをためる場所であり，お互いが水を汲出 すように何度でもことばを汲出す場所が会話なのである。さらに細馬氏は動物行動学における「ターン テイキング」（時間的に近接した音声どうしを関係あるものとみなす性質。リスザルや森林内の鳥類に見 られる）に言及し，「人間のコミュニケーションにも，意味のあることばのつながりがはじめからあるの ではなく，逆に時間的に近接したものが＂意味をもつ＂ようになる」と論を進める。こうした時間•空間的近接を利用したコミュニケーションは「ことばあそび」として知られるが，実は会話自体がことば あそび的な性質を持っており，そこに注目して細馬氏が制作したプログラムが紹介された。

まず，作家ウィリアム・バロウズによっ て広められた「カットアップ」の手法をデ ジタル化した「Dr．Burroughs」（MS－ DOS版1991，Macintosh版1993）であ る。このソフトウェアは任意に選んだ複数のテキストファイルをカットアップし，自動的に貼り合わせるものだが，この作成にあたり，細馬氏は「我々は文章を切 り刻む時，決してでたらめに切っている わけではない。そこには必ず＂パターン＂ がある」ことを重視した。実際にプログ ラムを動かしながら＂パターン＂を抽出 して切り貼りするプログラミング手法を紹介していく。

このプログラムはフリーウェアとして流通し，個々のパソコンで動作するもので

ユーザーが入カした「ことば」から，無数の物語が生まれる

（写真撮影：幸村真佐男）

あったが，氏はさらにPerlで書かれたcgi文章生成ソフトを作成し，自らのwebで発表することになる。 その一例として「Alter Ego」（http：／／ux01．so－net．ne．jp／～ev－net／）が紹介された。ここではワープロの検索•置換機能のように，ユーザーが入力した「ことば」が 150 を越える「物語」に自動的にはめ込ま れていく。ここでも細馬氏は物語という構造がもつ「繰り返し使われる記号，異なる文脈」に留意して いる。

むすびとして，細馬氏は「ネットワークとは多人数で考えるための環境であり，ことばの集水地を作 る場所である」と語った。繰り返し使われる記号を発見し，ためこんでいくことで物語は拡がるのであ り，決して＂新しいことば＂が必要なわけではない。むしろ古いことばの新しい使い方（異なる文脈）を用意することと，その結果（物語）を共有することに興味があると語られた。
当日はメディア科学科の学生を中心に50名以上の来場者があったが，氏の講演はネットワークアート を学び実践しつつある学生に大きな刺激となったことであろう。
（情報科学部メディア科学科 非常勤講師 北村祐子）

会議報告

第88回 情報科学部コロキウム

「ネットワーク・アートの表現と展望」

赤松正行氏（岐阜県立国際情報科学芸術アカデミー－IAMAS—教授）
於：情報科学部メディア科学科1階多目的スタジオ（2002年11月14日）

今回のコロキウムでは，IAMASの赤松教授を招いた。赤松氏はプログラマー，メディアアーティスト として国内外で活発に活動されているが，その作品の中から特に電子的ネットワークを使用した作品に ついてプレゼンテーションしていただくこととなった。

まず初期作品として「sound tronics field」（1995年）が紹介され た。これは赤松氏自作のアプリケーシ ョン「soundtronics」——Macintosh の同時録音再生機能を活用し，周囲 の音を自動録音再生する——を搭載し た24台のMacintoshを使用したインス タレーション作品である。自動的に録音•再生をくり返すマシンを至近距離 に置くことで，マシン同士が互いのス
 ピーカーから出た音を再びサンプリング・プレイバックする。この状況は，いわばマシン同士が＂空気の ネットワーク＂を介してコミュニケートしている状態だ（言うまでもなく音声は空気を媒体とし，伝わ っていく）。「sound tronics」を単体で動かすのとは違う，ある種の＂コミュニケーション＂がここでは生じている。赤松氏は，各アプリケーションが周囲の状況を判断できるように（例：音がうるさすぎる場合は，自分は少し黙る）プログラミングし，作品としての＂環境＂を作り上げた。こうした作品制作 について，赤松氏は「コンテンツなきコンテンツ」であると語る。氏が作り上げるのは任意（この場合 は音声）のコンテンツが可変する＂環境＂であり，プログラミング次第で「何もないところから何らか の意味が生まれる」ことこそ，制作の醍醐味であるという。「僕にとって作品づくりとは，思考実験のよ うなもの。ものごとを考えるために作品を作っている」（赤松）

「sound tronics field」の成功をきっかけに，赤松氏はさらに電子ネットワークを活用したアート作品 の制作を進めるようになる。その一例が1997～1998年に制作された「World Remix」である。これは Webのメカニズムを考察した結果生まれた作品だ。1998年に発表されたバージョンでは，検索ロボット を作成し，世界中のWebサイトから音声リンクのみを集め，サーバに登録する。世界中のWebにある「音」がリミックスされ，再生される作品だ。

この時期，同時に「MurMur World」（SONY DEP VRML部門アウォード），「A－X－E－S」という仮想空間をテーマにした作品も発表している。仮想空間で音を聴くこと，空間配置や空間移動による作曲•演奏をテーマにした作品群である。

1999年には，神戸ジーベックホールで「incubator」を発表する。これはイーサネットで繋がれた50台 のMacintoshという環境を用意し，この環境を使って5人の作曲家（赤松正行，カール・ストーン，三輪眞弘，佐近田展康，大谷安弘）に作品を依頼する，というものである。この環境づくりに関して，赤松氏は3つのネットワークモデルを提案した。

1）サーバ－クライエントモデル（例：Web）
2）マスター・スレーブモデル（例：放送）
3）ピア to ピアモデル（例：Napster）
このように3つのモデルをどのようにでもネットワークできる仕組みを作り，アウトプットは50個のデ ィスプレイと 100 個のステレオスピーカーというわけである。この展覧会は大成功をおさめるが，同時に ネットワークを知覚することの難しさと面白さを実感する体験となったという。昨今のコンピュータ上 の音楽制作（例•DTMの打ち込み作曲）のように全てが把握出来る状況ではなく，いわばオーケスト ラの響きを想像しながら交響曲を作曲するような体験が，ネットワークアート作品の制作にもあるのだ。

最後に野外展示を想定した作品「Symphony 2000」のプレゼンテーションが行われた。この作品は風 の動きに応じてネットワークされた複数のMacintoshが動作するものである。自然はWebがそうである ように自律分散型のネットワークであり，そのネットワークにネットワーク化されたマシンが働きかける ものである。

最近はビデオ映像作品にも手を染め，近作「Time Machine！」は本年度名古屋で行われたISEAと同時にフランス・ストラスブール現代美術館でも展示されている。

当日はメディア科学科の学生を中心に50名程度の来場者があったが，プログラミングを通じてネット ワークアートを制作する赤松氏の諸作は，大いに刺激になったものと思われる。
（情報科学部メディア科学科 非常勤講師 北村祐子）

－会議報告

中京大学公開講座 ソフトサイエンスシリーズ 第21回
 テクノエティックス

「地球的•技術＝認識論～芸術と技術，そしてその意識」 PLANETARY TECHNOETICS：art technology and consciousness．

講師 英国・ウェールズ大学教授ロイ・アスコット氏 Roy Ascott

主催 中京大学•人工知能高等研究所，名古屋市科学館，電子芸術国際会議2002［http：／／www．isea．ip／］
後援 中日新聞社
去る平成14年11月1日（金）（午後3時～4時30分）に名古屋市科学館サイエンスホールに於いて表記講演会 が開催されました。

講演の要旨

地球がテレマティック（遠隔情報通信技術）によって一つになっていくにつれ，私達の自己は拡散してい く。乾燥したシリコンのピクセルと湿って生きている細胞が融合して生まれる，モイスト（蓩雨）状のメディア基盤の上で，デジタルシステムと，テレマティークスと，遺伝工学と，ナノテクノロジーが芸術と出会うこと になる。
私は2000年のオーストリアのグラーツで行われた展覧会でモイスト宣言を発表した。 それは次のようなものである。

THE MOIST MANIFESTO モイスト宣言
MOIST SPACE is where dry pixels and wet molecules converge モイストスペースは乾いた画素と湿った分子が混在したところにある。

MOIST ART is digitally dry，biologically wet，and spiritually numinous モイストアートはデジタル的乾燥と生物的湿潤と聖なる精神性にある。

MOIST REALITY combines Virtual Reality with Vegetal Reality モイスト的現実は仮想現実と植物的現実の結合にある。

MOIST MEDIA comprises bits，atoms，neurons，and genes モイストメディアはビットと原子と神経細胞と遺伝子からなる。

MOIST TECHNOLOGY is interactive and psychoactive
モイスト技術は相互干渉的であると同時に精神に直接作用する。
MOIST LIFE embraces digital identity and biological being
モイストな生活はデジタルな自己と生物学的生存が抱き合う所にある。
MOIST MIND is technoetic multiconsciousness
モイストな心は技術的認識のマルチな精神性にある
MOISTWARE erodes the boundary between hardware and wetware
モイストウエアはハードウエアとウェットウェアの境界線を侵食する。
MOIST MANUFACTURE is tele－biotic，neuro－constructive，nano－robotic
モイストな製造は遠隔生物工学と神経構成法とナノロボット工学である。
MOIST ENGINEERING embraces ontology
モイスト工学は存在論と抱擁する。

MOIST DESIGN is bottom－up，seeded and emergent
モイストデザインは下から上へと流れ，創発的であり結実する。
MOIST COMMS are bio－telematic and psi－bernetic
モイスト コマスは遠隔生物工学と念力サイバネティクスである。
MOIST ART is at the edge of the Net
モイスト芸術はネットの境界線にある。
これはある意味で第二の「ビッグバン」であり，ビットと，原子と，神経細胞と，遺伝子によって，ポスト生物学的宇宙を創造することになる。このビッグバンは，人間のアイデンティティーがはるかに複雑なレベル にシフトすることを意味し，我々はネットの淵に立って半分サイバースペースに，半分物質的環境に身を置 き，浸透可能なリアリティーと流動的で変容する自己のただ中に生きることの意味を，深く自問せざるを得な い。自然についての新しいコンセプトが進化することにより，新しい形の人間関係や新しい社会形態を生み出 し，さらに芸術や詩の新しい形を引き出し，精神世界への新しい道標を与えてくれるだろう。

このようにして，人工的な，自然な，あるいは強化された，心と意識についての新しい思想が中心になって この進化を推し進めていく。

3 種のVRがある。
Validated Reality，which uses reactive mechanical technology，and is prosaicand Newtonian．
実証された現実，受身的な機械的技術•散文的ニュートン物理学的世界像
Virtual Reality，which uses interactive digital technology，and is telematic and immersive
仮想的現実，インタラクテイブなデジタル技術•遠隔操作的没入的
Vegetal Reality，which uses psychoactive plant technology，and is entheogenic and spiritual．植物的現実，植物学的技術による精神活性状態，埋め込み遺伝子による精神性

しかしながら，このテクノエティックスの美学の立ち現れは新しいメディアや最新のテクノロジーや革新的 な科学のパラダイムを取り込むだけではなく，従来の物質主義的な文脈からは締め出されていた秘教的，シャ ーマン的な古い伝統文化からも新しい洞察を得るだろう。世紀が進むにつれて，地相術や薬草学などの土地や植物についての古代のテクノロジーと，我々の構成的現実をつくるモイストメディア・テクノロジーとが同行 するだろう。そして新しい，あるいは再発見された意識の領域は全地球的ウェブの新しいドメインに連続して いくだろう。

9月11日危機以後，リアリティーについての思想が闘争する現在において，テクノ倫理的かつ，テクノエ ティックな，真の意味での全地球的文化が生まれるためには，学問領域を超えた共同的な研究が必要である。 コミュニケーション，学びと創造性の全く新しい組織を創りあげなければならない。地球学校はこの要請に答 えようとする最初の試みである。

また次のような文化の枠組みの変化が起こる。
CULTURAL SHIFT
from
content 内容
object 目的
reception 感得
representation 表現
hermeneutics 聖書解粎学
tunnel vision トンネル視覚
perspective 透視図的
to
context 文脈
process 過程
negotiation話し合い
construction 建設
heuristics 発見的方法
bird＇s eye view 鳥瞰視角
immersion 没入的

figure－ground 地と図	patternパターン
iconicity イコン的	bionicity 生物的
nature 自然	artificial life 人工生命
certainty 確からしさ	contingency 不確実性
resolution 解像度	emergence 出現
top－down 上から下へ	bottom－up下から積み上げる
observed reality 観測された現実	constructed reality 構成された現実
paranoia パラノイア	telenoiaテレノイア
autonomous brain 自律的脳	distributed mind 広域的心
behaviour of forms形による行為	forms of behaviour 行動の形態

－略歴

1934年イングランド生まれ。59年ダーラム大学で美術専攻の文学士号を取得。英国・カナダ・アメリカ等の美術大学の教授を歴任。ニュー・メディアに関する理論家，テレマティーク・アートのパイオニアとして，欧米のメ ディア・アート・フェスティバルの審査員。フランス文化省，アルス・エレクトロニカ・センター，美術科学の理論国際誌『Leonardo』のアドバイザー。代表作に『ヴェネツィア・ビエンナーレ86』1での《プラネタリー・ネ ットワーク》『アルス・エレクトロニカ 89 」での《ガイアの様相》等がある。94年ウェールズ大学グウェン ト・カレッジのインタラクティヴ・アート高等研究センター（Caii A）を創設し所長就任。U C L A の客員教授。著書に『アート \＆テレマティークス・新しい美の理論構築に向けてI C C • N T T 出版』 1998年。編著に『Reframing Consciousness•Art，mind and technology』 intellect 1999年。 国際ジャーナル誌『Technoetic Arts』の主幹編集長
http：／／www．caiia－star．net／
http：／／www．design．ucla．edu／home．html
http：／／www．i ntel lectbooks。com／iournals／technoetic／index．htm
（情報科学部メディア科学科教授 幸村真佐男）

－研究所員一覧

－名誉所員	戸田正直	福村晃夫	
■ 情報科学部			
情報科学科	廣木守雄	田村 浩一郎	川端信男
	荒木和男	飯田三郎	秦野萳世
	興水大和	中山 晶	嶋田 晋
	伊藤秀昭	鈴木常彦	清水 優
認知科学科	木村 泉	棚橋 純一	三宅芳雄
	三宅なほみ	白井 英俊	高橋和弘
	小笠原秀美	土屋孝文	白水 始
メディア科学科	湊 幸衛	幸村 真佐男	伊藤 誠
	興膳生二郎	長谷川純一	富田 義郎
	諏訪正樹	宮崎 慎也	カール・ストーン
	大泉和文	磯 直行	上芝智裕
	山田雅之	瀧 剛志	曽我部哲也
■体育学部	北川 薫		
回岐阜大学	加藤 邦人		
■デンソー	赤堀一郎	加藤 利文	横井邦雄
	一ツ松孝文	坂井 誠	高橋 輝
	立石雅彦		
■三洋電機	石川猶也	藤村 恒太	
■大宏電機	渡辺 隆	高木和則	
回創夢	近藤秀樹	織田 篤嗣	
－SKEN	鈴木健志		
■ CREST	落合弘之	鈴木晋吾	井上靖幸
	田中真一	青木 淳	浅岡浩子
■ソフトピアジャパン	冨永将史		
■リフレクション	伊藤剛志		
■研究員	日野泰志		
■準研究員	渡辺恵人	廣瀬 誠	宮坂健夫
	松井康之	舟橋琢磨	近藤隆行
	山口 剛	林 純一郎	藤原孝幸
	野田 耕平	湯浅且敏	益川弘如

〈編集後記〉

産学連携における大学の力は，入試から見た大学の魅力と並び立つものかもしれません。同時に，一方の向上は，相乗的に他方を押し上げてくれることも期待されます。

この度，産学連携の特集企画をお願いしたところ，お忙しい中，玉稿を頂いた。皆様 に深く感謝いたします。とりわけ，慶応義塾大学の中島先生からは，具体的なエールを お届けいただきました。大いに勉強させて頂くつもりです。また，業務多忙な中にも係 わらず原稿を下さったデンソー，三洋電機，リフレクション，電子システムの各位には謹 んで敬意を表し，同時に今後の産学連携の中心的役割を演じて頂けるよう改めてお願い申し上げる次第です。

> (ゲストエディター: 輿水大和)

丸 $\star \star$ 人工知能高等研究所のWWWページのご案内

アドレス http：／／www．cglab．sccs．chukyo－u．ac．jp／IASAI／index．html

ふれ中京大学のWWWページのご案内 ふえ
アドレスhttp：／／www．chukyo－u．ac．jp／

IASAI NEWS 第11号 2002年12月20日発行
－発行•編集 中京大学 情報科学部 人工知能高等研究所
〒470－0393 愛知県豊田市貝津町床立101 $\boldsymbol{\Xi}$（0565）46－1211（代表）
－印刷 ニッコアイエム株式会社
〒460－0024 名古屋市中区正木1－13－19

本誌記事の無断転載を禁じます。
（C） 2002 中京大学 人工知能高等研究所

[^0]: ＊これらの実験の立案，実施，データの分析には，三宅なほみ研究室博士課程3年益川弘如さん，修士課程1年山中佑也 さん，学部 4 年松浦葸さんに協力いただいた。

